DC Air Circuit Breakers Moulded Case Circuit Breakers

TemPower \& TemBreak

TERASAKI ELECTRIC CO., LTD.

TABLE OF CONTENTS

1. General -1
Introduction $1-2$
General 1-3
Selection Chart 1-4
2. Ratings and Specifications 2-1
Air Circuit Breakers for DC350V-800V 2-2
Moulded Case Circuit Breakers for DC350V-600V -3
Moulded Case Circuit Breakers for DC750V-1000V $\cdots 2-5$
Switch-disconnectors for DC600V-1000V 2-8
3. Characteristics 3-1
Time/Current characteristic curves,
Ambient Compensating Curves
S160-SD, S160-GD, PVE160-SDL,
S250-SD, S250-GD 3P 3-2
S400-ND, S800-ND 3P 3-3
S1000-ND 2P, 3P 3-3
XS1250ND, XS1600ND, XS2000ND 2P, 3P 3-4
XS2500ND, XS3200ND 2P, 3P 3-5
PVS160-SDL, PVS250-SDL 3P, 4P 3-6
PVS160-SDH, PVS250-SDH 4P 3-6
PVS160-GDH, PVS250-GDH 4P 3-6
PVS400-NDL 3P 3-6
PVS400-NDL, PVS400-NDH, PVS800-NDH 4P 3-7
PVS800-NDL 3P, 4P 3-7
4. Mounting and Connection 4-1
Connection of conductors to DC circuit breakers -4-2
Insulation distance DC600V or less 4-7
Insulation distance DC750V-1000V
PVE160-SDL 3P4-8
PVS160-SDL 3P
PVS250-SDL 3P, PVS250-SNL 3P 4-9
PVS160-SDL 4P, PVS250-SDL 4P,
PVS160-SNL 4P, PVS250-SNL 4P $\quad \cdots \cdots 4-10$
PVS160-GDH 4P, PVS250-GDH 4P 4-11
PVS160-SDH 4P, PVS250-SDH 4P 4-12
PVS160-SNH 4P, PVS250-SNH 4P 4-13
PVS400-NDL 3P 4-14
PVS400-NDL 4P, PVS400-NDH 4P 4-15
PVS400-NNL 3P 4-16
PVS400-NNL 4P, PVS400-NNH 4P 4-17
PVS800-NDL 3P 4-18
PVS800-NDL 4P, PVS800-NDH 4P 4-19
PVS800-NNL 3P 4-20
PVS800-NNL 4P, PVS800-NNH 4P 4-21
5. Accessories 5-1
Internally mounted accessories
6. Connection diagrams and terminal numbers 5-2
7. Possible combinations 5-3
8. Ratings data of auxiliary and alarm switches -5-4
9. Shunt trip device (SH) 5-4
10. Undervoltage trip device (UV) 5-4
Externally mounted accessories
11. Motor operators (MC) -5-6
12. External operating handles 5-12
(1) Breaker-mounted (field installable small type) (HB) $\cdots \cdots 5-12$
(2) Door-mounted (depth adjustable) (HP) 5-20
13. Toggle holder (HH) and toggle lock (HL) 5-27
14. Terminal covers 5-28
15. Terminal blocks (TF) 5-32
16. Outline Dimensions 6-1
DC Air Circuit Breakers Outline Dimensions AR216S, AR220S 3P 6-2
AR325S, AR332S 3P 6-4
AR325-NDH 4P 6-6
AR440S 3P 6-8
DC Moulded Case Circuit Breakers Outline DimensionsS160-SD, S160-GD, S160-SDN, S250-SD,S250-GD, S250-SDN 3P6-10
S400-ND 3P 6-11
S800-ND 3P 6-11
S1000-ND 2P, 3P 6-12
XS1250ND 2P, 3P 6-13
XS1600ND 2P, 3P 6-14
XS2000ND 2P, 3P 6-15
XS2500ND, XS3200ND 2P, 3P 6-16
PVE160-SDL 3P 6-17
PVS160-SDL, PVS250-SDL 3P 6-18
PVS250-SNL 3P 6-18
PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL 4P 6-19
PVS160-GDH, PVS250-GDH 4P 6-19
PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH 4P 6-20
PVS400-NDL 3P 6-21
PVS400-NDL, PVS400-NDH 4P 6-21
PVS400-NNL 3P 6-22
PVS400-NNL, PVS400-NNH 4P 6-22
PVS800-NDL 3P 6-23
PVS800-NDL, PVS800-NDH 4P 6-23
PVS800-NNL 3P 6-24
PVS800-NNL, PVS800-NNH 4P 6-24

General

Introduction 1-2
General 1-3
Selection Chart 1-4

Introduction

In recent years, as part of the drive to reduce greenhouse gas emissions, significant attention is now being directed towards the energy produced by large-scale photovoltaic (solar), wind, and biomass energy power generation.
The total power generation capacity of facilities for these new energy sources is expected to exceed that produced by nuclear energy by approximately 2030. To aid and support these new technologies, Terasaki now offer a new, broad range of dedicated DC air circuit breakers and moulded case circuit breakers. The new range of Terasaki DC circuit breakers are ideally suited for all types of industries, buildings, as well as the information technology and communications sectors where highly reliable sources of electric power are required.

DC Air Circuit Breakers

AR220S
Rated current 2000A
Rated breaking capacity DC600V 40kA
Possible reverse connection

DC Moulded Case Circuit Breakers

PVE160-SDL
Rated current 160A
Rated breaking capacity DC750V 3kA
Possible reverse connection

PVS160-SDL
Rated current 160A Rated breaking capacity DC750V 5kA -----------------------------

PVS250-SDH
Rated current 250A
Rated breaking capacity DC1000V 5kA

[^0]
General

DC power sources for the Uninterruptible Power Supply (UPS) market

Electrical and electronic equipment used in the advanced information and communications sectors requires a highly reliable power source. Should a power failure occur, and to assist with continuity of electrical power, it is standard practice to install an Uninterruptable Power Supply (UPS).

A data centre is where Internet servers and other systems for data communications, such as fixed, mobile, and IP telephones are installed. At the data centre, AC power from the main system power source is sent to the UPS, and is temporarily converted to DC power. A storage battery is then charged with this DC power, which is reconverted back into $A C$ power and then sent to the information equipment.

Building and Industrial power back-up

A UPS is typically required for critical power systems in department stores, hotels, hospitals, theaters, and office buildings. For example, in semiconductor manufacturing plants that feature advanced automation as a part of their production processes, UPS systems with large battery capacities are used to take measures against any large-scale power outage affecting critical manufacturing facilities.

Photovoltaic power generation

Photovoltaic (or Solar) power generation, which is attracting attention as clean energy, ranges from simple generation of up to several kilowatts for home use, to larger systems of 100 kilowatts or greater for industrial use. In the "School New Deal" program, one of the governmental measures during the economic crisis, were for ecofriendly modifications which advocated the use of photovoltaic power generation at schools. One example is a power distribution system linked to a source of photovoltaic power generation. The current produced from the photovoltaic solar cells is sent to a power conditioner via a diode with a DC circuit breaker in a junction box and then converted into AC, which can then be supplied to a load via a distribution board.

Rationalization of use of electric power via large-capacity storage battery

Energy from new power sources such as wind and photovoltaic power generation do not have a stable output. A lithium ion battery and a sodium-sulfur (NAS) battery can suppress such fluctuations by load leveling. The battery is charged at night using a lower electrical power rate at night and discharged at daytime when the electrical power usage rate is higher, and in addition, any new electrical power generated can also be saved. For this purpose, large-capacity storage battery systems are used at wind and photovoltaic power generation facilities. The use of these types of systems is expected to grow across all user sectors requiring large amounts of power, plus as an additional measure against possible power outages.

All Air Circuit Breakers and Switch-disconnectors are possible to reverse the connection. Moulded Case Circuit Breakers up to 1000A frame are possible to reverse the connection.

Selection Chart

Voltage

Frame size (A)

PVS400-NDH 4P 5kA/5kA
 Breakers

Reverse connection

1000	1250	1600	2000	2500	3200	4000
				AR325-NDH 4 P $30 \mathrm{kA} / 30 \mathrm{kA}$		
		AR2168 3 P 40kA/40kA	$\begin{gathered} \text { AR220S } \\ 3 \mathrm{P} \\ 40 \mathrm{kA} / 40 \mathrm{kA} \end{gathered}$	AR325S 3 P 40kA/40kA	$\begin{gathered} \text { AR332S } \\ 3 \mathrm{P} \end{gathered}$ 40kA/40kA	AR4408 3P 40kA/40kA

S1000-ND	$\begin{gathered} \text { XS1250ND } \\ 3 \mathrm{P} \\ 20 \mathrm{kA} / 15 \mathrm{kA} \end{gathered}$	K81800ND 3 P 20kA/15kA	KS2OOOND 3 P 20kA/15kA	XS2500ND 3 P 20kA/15kA	$\begin{aligned} & \text { XSB200ND } \\ & 3 \mathrm{P} \\ & \text { 20kA/15kA } \end{aligned}$
S1000-ND 3 P 30kA/15kA	X81250ND 3P 50kA/25kA	X81800ND 3 3 $50 \mathrm{kA} / 25 \mathrm{kA}$	KS2000ND 3 P 50kA/25kA	KS2500ND 3P 50kA/25kA	XS8200ND 3P $50 \mathrm{kA} / 25 \mathrm{kA}$
S1000-ND 2P 50kA/20kA	XS1250ND 2 P 50kA/30kA	K81800NI 2 P $50 \mathrm{kA} / 30 \mathrm{kA}$	XS2000ND 2 P 50kA/30kA	K82500ND 2P 50kA/30kA	$\begin{aligned} & \text { XS8200ND } \\ & 2 \mathrm{P} \\ & 50 \mathrm{kA} / 30 \mathrm{kA} \end{aligned}$

Ratings and Specifications

Air Circuit Breakers for DC350V-800V 2-2
Moulded Case Circuit Breakers for DC350V-600V 2-3
Moulded Case Circuit Breakers for DC750V-1000V 2-5
Switch-disconnectors for DC600V-1000V 2-8

Air Circuit Breakers for DC350V－800V

Frame size（A）		1600	2000	2500	2500	3200	4000
Type		AR216S	AR220S	AR325S	AR325－NDH	AR332S	AR440S
Rated current（max．）〔In〕 A		1600	2000	2500	2500	3200	4000
Number of poles		3	3	3	4	3	3
Rated insulation voltage 〔 U_{i} 〕 V	AC	1000	1000	1000	1000	1000	1000
Rated operational voltage〔U U_{e} ¢ V	DC	600	600	600	800	600	600
Rated impulse withstand voltage 〔 $\mathrm{U}_{\text {imp }}$ 〕 kV		12	12	12	12	12	12
－Rated breaking cap，kA							
JIS C 8201－2－1 Ann． 1 Ann． 2 DC	800 V	－	－	－	30／30	－	－
IEC 60947－2	600 V	40／40	40／40	40／40	－	40／40	40／40
$I_{\text {cu }} / I_{\text {cs }}$（1）（2）	500 V	40／40	40／40	40／40	－	40／40	40／40
	350 V	40／40	40／40	40／40	－	40／40	40／40
Rated short time withstand current〔$I_{\text {cw }}$ 〕 kA	1s	40	40	40	30	40	40
Latching current kA		65	65	85	85	85	100
Total breaking time（s）		0.04	0.04	0.04	0.04	0.04	0.04
Closing operation time							
Spring charging time（s）max．		10	10	10	10	10	10
Close time（s）max．		0.08	0.08	0.08	0.08	0.08	0.08
No．of operating cycles							
Mechanical life with maintenance		30000	25000	20000	20000	20000	15000
without maintenance		15000	12000	10000	10000	10000	8000
Electrical life without maintenance DC	600 V	1000	1000	500	500	500	500
\square Outline dimension mm							
Draw－out $\quad \square$	a	354	354	460	580	460	631
type b B	b	460	460	460	460	460	460
	c	345	345	345	345	345	375
$\xrightarrow{\text { a }} \mathrm{C}$	d	40	40	40	40	40	53
Weight kg		76	79	105	125	105	139
Reverse connection		Yes	Yes	Yes	Yes	Yes	Yes

Notes：

－：＂no＂or＂not available＂．
（1）：AGR over－current release can not be used for DC．Please prepare DC over－current relay and connect with shunt trip device．
（2）：The time constant（L／R）of the circuit should be，
less than 2.0 ms nearby rated current
less than 15 ms for short circuit
（1）Shunt trip device is Instantaneously rated type．Continuously rated shunt trip device is not applicable．
（2）Undervoltage trip device is not applicable．
（3）Test jumper is not applicable．
For further details please contact TERASAKI．

Moulded Case Circuit Breakers for DC350V-600V

Notes:

○ : Standard. This configuration used unless otherwise specified. ○ : Optional standard. Specify when ordering. - "yes" or "available". - : "no" or "not available".
(3) : Line side interpole barriers are supplied as standard. (Front connection only)
(4) : Connect 3pole or 4pole in series when over DC250V
(5) : The time constant (L/R) of the circuit should be,
less than 2.0 ms nearby rated current
less than 5 ms for short circuit $\leqq 10 \mathrm{KA}$
less than 10 ms for short circuit $\leqq 20 \mathrm{KA}$
less than 15 ms for short circuit > 20KA
(11) : Provided with DIN rail adaptor.
(12) : Be sure to install the terminal covers on Line side (ON side) that is supplied as standard
(13) : Possible to fit on load side (option).
(77) : + means the dimension of the terminal cover. See outline dimensions for details.

Moulded Case Circuit Breakers for DC350V-600V

Moulded Case Circuit Breakers for DC750V-1000V

Moulded Case Circuit Breakers for DC750V-1000V

Moulded Case Circuit Breakers for DC750V-1000V

Frame size (A)	400		400	800		800
Type	PVS400-NDL		PVS400-NDH	PVS800-NDL		PVS800-NDH
Number of poles	3	4	4	3	4	4
Ratings						
Rated current, A	250 (160-250)	250 (160-250)	250 (160-250)	630 (400-630)	630 (400-630)	630 (400-630)
Calibrated at $45^{\circ} \mathrm{C}$	400 (250-400)	400 (250-400)	400 (250-400)	800 (500-800)	800 (500-800)	800 (500-800)

Switch-disconnectors for DC600V-1000V

Frame size (A)	160	160	160	250	$\begin{aligned} & \hline 250 \\ & \hline \text { PVS250-SNL } \end{aligned}$		250 PVS250-SNH
Type	S160-SDN	PVS160-SNL	PVS160-SNH	S250-SDN			
Number of poles	3	4	4	3	3	4	4
Ratings							
Rated current, A	160	160	160	250	25		250

Switch-disconnectors for DC600V-1000V

Characteristics

Time/Current characteristic curves, Ambient Compensating CurvesS160-SD, S160-GD, PVE160-SDL, S250-SD, S250-GD 3P3-2S400-ND, S800-ND 3P 3-3
S1000-ND 2P, 3P 3-3
XS1250ND, XS1600ND, XS2000ND 2P, 3P 3-4
XS2500ND, XS3200ND 2P, 3P 3-5
PVS160-SDL, PVS250-SDL 3P, 4P 3-6
PVS160-SDH, PVS250-SDH 4P 3-6
PVS160-GDH, PVS250-GDH 4P 3-6
PVS400-NDL 3P 3-6
PVS400-NDL, PVS400-NDH, PVS800-NDH 4P 3-7
PVS800-NDL 3P, 4P 3-7

Time/Current characteristic curves, Ambient Compensating Curves

Time/Current characteristic curves, Ambient Compensating Curves

Type	Time/Current characteristic curves, Ambient Compensating Curves	
S400-ND 3P		Rated current (A) Magnetic trip current (A) 250 3000 400 4800 Notes : Setting tolerance $\pm 20 \%$
S800-ND 3P		Rated current (A) Magnetic trip current (A) 630 6300 800 8000 Notes : Setting tolerance $\pm 20 \%$
S1000-ND 2P, 3P		Rated current (A) Magnetic trip current (A) 1000 8000 Notes : Setting tolerance $\pm 20 \%$

Time/Current characteristic curves, Ambient Compensating Curves

Type	Time/Current characteristic curves, Ambient Compensating Curves	
XS1250ND 2P, 3P		Rated current Magnetic trip current (A) (A) Scale 8 7.1 6.3 5 4 1250 8000 7100 6300 5000 4000 Notes: Setting tolerance $\pm 10 \%$ at 8000 A and $\pm 25 \%$ for other settings. Note: Magnetic trip only. Use the external over-current relay.
XS1600ND 2P, 3P		Rated current Magnetic trip current (A) (A) Scale 8 7.1 6.3 5 4 1600 8000 7100 6300 5000 4000 Notes : Setting tolerance $\pm 10 \%$ at 8000 A and $\pm 25 \%$ for other settings. Note: Magnetic trip only. Use the external over-current relay.
XS2000ND 2P, 3P		Rated current Magnetic trip current (A) (A) Scale 8 7.1 6.3 5 4 2000 8000 7100 6300 5000 4000 Notes : Setting tolerance $\pm 10 \%$ at 8000 A and $\pm 25 \%$ for other settings. Note: Magnetic trip only. Use the external over-current relay.

Time/Current characteristic curves, Ambient Compensating Curves

Time/Current characteristic curves, Ambient Compensating Curves

Time/Current characteristic curves, Ambient Compensating Curves

Mounting and Connection

Connection of conductors to DC circuit breakers 4-2
Insulation distance DC600V or less 4-7
Insulation distance DC750V-1000V
PVE160-SDL 3P 4-8
PVS160-SDL 3P, PVS250-SDL 3P, PVS250-SNL 3P 4-9
PVS160-SDL 4P, PVS250-SDL 4P, PVS160-SNL 4P, PVS250-SNL 4P 4-10
PVS160-GDH 4P, PVS250-GDH 4P 4-11
PVS160-SDH 4P, PVS250-SDH 4P 4-12
PVS160-SNH 4P, PVS250-SNH 4P 4-13
PVS400-NDL 3P 4-14
PVS400-NDL 4P, PVS400-NDH 4P 4-15
PVS400-NNL 3P 4-16
PVS400-NNL 4P, PVS400-NNH 4P 4-17
PVS800-NDL 3P 4-18
PVS800-NDL 4P, PVS800-NDH 4P 4-19
PVS800-NNL 3P 4-20
PVS800-NNL 4P, PVS800-NNH 4P 4-21

Connection of conductors to DC circuit breakers

It is more difficult to interrupt DC current than AC current because DC current does not have a zero point. Therefore for high DC voltages, 3-pole or 4-pole circuit breaker main contacts are connected in series to ensure breaking performance. As illustrated below, the main power conductors for DC-use air circuit breakers, moulded case circuit breakers, and switch disconnectors shall be connected generally as shown below but also depending on the type of breaker, the number of poles, and the DC operating voltage.

		Non- (Protectio	-grounded system on + Isolation function)		ded system rotection)	(Protec	ded system Isolation function)
	Ordinally connection			$\underset{=}{\int_{-}^{C}}$			
	Reverse connection		 Source				
Type of breakers	No.s of poles	Applicable voltage (V)	Rated breaking capacity $I_{\text {cu }} / I_{\text {cs }}$	Applicable voltage (V)	Rated breaking capacity $I_{\text {cu }} / I_{\text {cs }}$	Applicable voltage (V)	Rated breaking capacity $I_{\mathrm{cu}} / I_{\mathrm{cs}}$
S1000-ND	2P	$\leqq 250$	50kA/20kA	$\leqq 250$	50kA/20kA	§150	50kA/20kA

*: 2 poles breaker is a 3 pole breaker with the center pole omitted.

[^1]| | | Non-grounded system (Protection + Isolation function) | | Grounded system (Protection) | | Grounded system (Protection + Isolation function) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Ordinally connection | | | | | | |
| | Reverse connection | | | | | | |
| Type of breakers | No.s of poles | Applicable voltage (V) | Rated breaking capacity $I_{\mathrm{cu}} / I_{\mathrm{cs}}$ | Applicable voltage (V) | Rated breaking capacity $I_{\text {cu }} / I_{\text {cs }}$ | Applicable voltage (V) | Rated breaking capacity $I_{\mathrm{cu}} / I_{\mathrm{cs}}$ |
| S160-SD | 3P | $\leqq 600$ | 5kA/5kA | $\leqq 600$ | 5kA/5kA | $\leqq 400$ | 5kA/5kA |
| S160-SD | 3P | $\leqq 500$ | $7.5 \mathrm{kA} / 7.5 \mathrm{kA}$ | $\leqq 500$ | $7.5 \mathrm{kA} / 7.5 \mathrm{kA}$ | $\leqq 350$ | $7.5 \mathrm{kA} / 7.5 \mathrm{kA}$ |
| S160-SD | 3P | $\leqq 350$ | 10kA/10kA | $\leqq 350$ | 10kA/10kA | $\leqq 250$ | 10kA/10kA |
| S160-GD | 3P | $\leqq 600$ | 10kA/5kA | $\leqq 600$ | 10kA/5kA | $\leqq 400$ | 10kA/5kA |
| S160-GD | 3P | $\leqq 500$ | 15kA/7.5kA | $\leqq 500$ | 15kA/7.5kA | $\leqq 350$ | 15kA/7.5kA |
| S250-SD | 3P | $\leqq 600$ | 5kA/5kA | $\leqq 600$ | 5kA/5kA | $\leqq 400$ | 5kA/5kA |
| S250-SD | 3P | $\leqq 500$ | $7.5 \mathrm{kA} / 7.5 \mathrm{kA}$ | $\leqq 500$ | $7.5 \mathrm{kA} / 7.5 \mathrm{kA}$ | $\leqq 350$ | $7.5 \mathrm{kA} / 7.5 \mathrm{kA}$ |
| S250-SD | 3P | $\leqq 350$ | 10kA/10kA | $\leqq 350$ | 10kA/10kA | $\leqq 250$ | 10kA/10kA |
| S250-GD | 3 P | $\leqq 600$ | 10kA/5kA | $\leqq 600$ | 10kA/5kA | $\leqq 400$ | 10kA/5kA |
| S250-GD | 3 P | $\leqq 500$ | 15kA/7.5kA | $\leqq 500$ | 15kA/7.5kA | $\leqq 350$ | $15 \mathrm{kA} / 7.5 \mathrm{kA}$ |
| S400-ND | 3 P | $\leqq 600$ | 15kA/15kA | $\leqq 600$ | 15kA/15kA | $\leqq 400$ | 15kA/15kA |
| S400-ND | 3P | $\leqq 350$ | 20kA/20kA | $\leqq 350$ | 20kA/20kA | $\leqq 250$ | 20kA/20kA |
| S800-ND | 3 P | $\leqq 600$ | 20kA/10kA | $\leqq 600$ | 20kA/10kA | $\leqq 400$ | 20kA/10kA |
| S800-ND | 3 P | $\leqq 350$ | 30kA/15kA | $\leqq 350$ | 30kA/15kA | $\leqq 250$ | 30kA/15kA |
| S1000-ND | 3P | $\leqq 600$ | 20kA/10kA | $\leqq 600$ | 20kA/10kA | $\leqq 400$ | 20kA/10kA |
| S1000-ND | 3 P | $\leqq 350$ | 30kA/15kA | $\leqq 350$ | 30kA/15kA | $\leqq 250$ | 30kA/15kA |
| PVE160-SDL | 3P | $\leqq 750$ | 3kA/3kA | $\leqq 750$ | 3kA/3kA | $\leqq 500$ | $3 \mathrm{kA} / 3 \mathrm{kA}$ |
| PVS160-SDL | 3 P | $\leqq 750$ | 5kA/5kA | $\leqq 750$ | 5kA/5kA | $\leqq 500$ | 5kA/5kA |
| PVS250-SDL | 3 P | $\leqq 750$ | 5kA/5kA | $\leqq 750$ | 5kA/5kA | $\leqq 500$ | 5kA/5kA |
| PVS400-NDL | 3P | $\leqq 750$ | 10kA/5kA | $\leqq 750$ | 10kA/5kA | $\leqq 500$ | 10kA/5kA |
| PVS800-NDL | 3 P | $\leqq 750$ | 10kA/10kA | $\leqq 750$ | 10kA/10kA | $\leqq 500$ | 10kA/10kA |
| S160-SDN | 3P | $\leqq 600$ | - | $\leqq 600$ | - | $\leqq 400$ | - |
| S250-SDN | 3 P | $\leqq 600$ | - | $\leqq 600$ | - | $\leqq 400$ | - |
| PVS250-SNL | 3P | $\leqq 750$ | - | $\leqq 750$ | - | | |
| PVS400-NNL | 3P | $\leqq 750$ | - | $\leqq 750$ | - | | |
| PVS800-NNL | 3P | $\leqq 750$ | - | $\leqq 750$ | - | | |

Connection of conductors to DC circuit breakers

		Non-grounded system (Protection + Isolation function)		Grounded system (Protection)		Grounded system (Protection + Isolation function)	
	Ordinally connection						
Type of breakers	No.s of poles	Applicable voltage (V)	Rated breaking capacity $I_{c u} / I_{\text {cs }}$	Applicable voltage (V)	Rated breaking capacity $I_{\mathrm{cu}} / I_{\mathrm{cs}}$	Applicable voltage (V)	Rated breaking capacity $I_{\text {cu }} / I_{\text {cs }}$
XS1250ND	3P	$\leqq 600$	20kA/15kA	$\leqq 600$	20kA/15kA	$\leqq 400$	20kA/15kA
XS1250ND	3P	$\leqq 500$	50kA/25kA	$\leqq 500$	50kA/25kA	$\leqq 350$	50kA/25kA
XS1600ND	3P	$\leqq 600$	20kA/15kA	$\leqq 600$	20kA/15kA	$\leqq 400$	$20 \mathrm{kA} / 15 \mathrm{kA}$
XS1600ND	3 P	$\leqq 500$	50kA/25kA	$\leqq 500$	50kA/25kA	≤ 350	50kA/25kA
XS2000ND	3P	$\leqq 600$	20kA/15kA	$\leqq 600$	20kA/15kA	$\leqq 400$	20kA/15kA
XS2000ND	3P	$\leqq 500$	50kA/25kA	$\leqq 500$	50kA/25kA	$\leqq 350$	50kA/25kA
XS2500ND	3P	$\leqq 600$	20kA/15kA	$\leqq 600$	20kA/15kA	$\leqq 400$	$20 \mathrm{kA} / 15 \mathrm{kA}$
XS2500ND	3 P	$\leqq 500$	50kA/25kA	$\leqq 500$	50kA/25kA	$\leqq 350$	50kA/25kA
XS3200ND	3 P	$\leqq 600$	20kA/15kA	$\leqq 600$	20kA/15kA	$\leqq 400$	20kA/15kA
XS3200ND	3P	$\leqq 500$	50kA/25kA	$\leqq 500$	50kA/25kA	$\leqq 350$	50kA/25kA

[^2]
Connection of conductors to DC circuit breakers

Note (3) : AGR over-current release can not be used for DC. Please prepare DC over-current relay and connect with shunt trip device.
Non-grounded system
(Protection I Isolation function)

Note (3) : AGR over-current release can not be used for DC. Please prepare DC over-current relay and connect with shunt trip device.

Insulation distance DC600V or less

The insulation distances between the breaker and earthed metal parts and insulators shown in the table below must be maintained to prevent arcing faults occurring due to conductive ionised gas. In addition, any exposed line-side conductors must be completely covered, right up the breaker casing or to below the height protected by any interpole barriers. This can done by using an insulation tube or tape, in order to provide positive protection against short circuit or ground fault due to metal chipping, surge voltage, dust particles or salt. If terminal covers are not being used, the interpole barriers supplied with the breaker as standard must be used.

A . Distance from lower breaker to exposed live part of upper breaker terminal (front connection) or distance from lower breaker to end face of upper breaker (rear connection).
B1. Distance from end face of breaker to top plate.
B2. Distance from end face of breaker to insulation plate.
C. Gap between breakers.

D . Distance from side of breaker to side plate (earthed metal).
E. Dimension of insulation over exposed conductors.

Insulation distance, mm (DC 600 V or less) Note (1)

Moulded Case Circuit Breakers				A Note (2)	B1	B2		C	D	E
S160-SD	S160-GD	S160-SDN	(5)	50	50	50	*	Possible to set close Note (3)	25	Not less than the length of the bare live part Note (4)
S250-SD	S250-GD	S250-SDN	(5)	65	65	65	*	"	50	"
S400-ND	S800-ND	S1000-ND		150	120	80		"	80	"
XS1250ND	XS1600ND	XS2000ND	XS2500ND	150	150	100		"	100	

Notes:

(1). Required to allow free and uninterrupted flow of arc gases. Ensure additional clearance or insulation distance if required to perform wiring, barrier installation or electrical work or to meet the need for more insulation distance between bare live parts and grounded metal members in a switchboard or the like.
(2). The figures are for lower breakers.
(3). When the accessories are fitted it is not possible to set close
(4). For front connected breakers, insulate all exposed conductors of the line side until the breaker end. If interpole barriers are packed, be sure to use the barriers; more over, insulate all exposed conductors by insulating tape or the like so that the tape overlaps with the barriers.
(5). Be sure to install the terminal covers (supplied as standard) on the line side of the breakers
*. If using extension bars (optional), ensure the insulation distance specified for the application.

Insulation distance DC750V-1000V

The insulation distances between the breaker and earthed metal parts and insulators shown in the table below must be maintained to prevent arcing faults occurring due to conductive ionised gas. In addition, any exposed line-side conductors must be completely covered, right up the breaker casing or to below the height protected by any terminal covers or interpole barriers. This can done by using an insulation tube or tape, in order to provide positive protection against short circuit or ground fault due to metal chipping, surge voltage, dust particles or salt. The terminal covers or the interpole barriers supplied with the breaker as standard must be used. For DC750V-1000V breakers, the front and the rear insulating plates must also be installed.

PVE160-SDL 3P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)		Insulating plate	
		A	B	Terminal cover	Insulating plate
PVE160-SDL 3P	Front-connected Rear-connected	25	50	2 pcs are supplied for line and load side as standard.	1 pc of $130 \mathrm{~mm} \times 75 \mathrm{~mm}$ for F.C. or $140 \mathrm{~mm} \times 75 \mathrm{~mm}$ for R.C. is supplied as standard.

PVS160-SDL 3P, PVS250-SDL 3P, PVS250-SNL 3P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)		Insulating plate	
		A	B	Terminal cover	
PVS160-SDL 3P PVS250-SDL 3P PVS250-SNL 3P	Front-connected Rear-connected	50	65	2pcs are supplied for line and load side as standard.	Insulating plate 2pcs of 115mm $\times 137.5 \mathrm{~mm}$ are supplied as standard.

Insulation distance DC750V-1000V

PVS160-SDL 4P, PVS250-SDL 4P, PVS160-SNL 4P, PVS250-SNL 4P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)		
		A	B	
PVS160-SDL 4P PVS250-SDL 4P PVS10-SNL 4P PVS250-SNL 4P	Front-connected Rear-connected	50	65	2pcs are supplied for line and load side as standard.

PVS160-GDH 4P, PVS250-GDH 4P

Front-connected

Rear-connected

* : Arc space is the same dimension as the insulation plate (rear).

Type	Connection	Minimum insulation distance (mm)		Insulating plate		
		A	B	Terminal cover	Terminal cover lock	
PVS160-GDH 4P PVS250-GDH 4P	Front-connected Rear-connected	50	80	2pcs are supplied for line and load side as standard.	2pcs are supplied for line and load side as standard.	2pcs of 240mm are supplied as standard.

Insulation distance DC750V-1000V

PVS160-SDH 4P, PVS250-SDH 4P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)		Insulating plate	
		A	B	Terminal cover	Insulating plate
PVS160-SDH 4P PVS250-SDH 4P	Front-connected Rear-connected	50	65	2pcs are supplied for line and load side as standard.	2 pcs of $180 \mathrm{~mm} \times 147.5 \mathrm{~mm}$ are supplied as standard.

PVS160-SNH 4P, PVS250-SNH 4P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)		Insulating plate	
		A	B	Terminal cover	
PVS160-SNH 4P PVS250-SNH 4P	Front-connected Rear-connected	30	65	2pcs are supplied for line and load side as standard.	2pcs of 166mm $\times 137.5 \mathrm{~mm}$ are supplied as standard.

PVS400-NDL 3P

Front-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS400-NDL 3P	Front-connected Rear-connected	160	80	80	30	140	160	60	Not supplied	Supplied as standard

PVS400-NDL 4P, PVS400-NDH 4P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS400-NDL 4P PVS400-NDH 4P	Front-connected Rear-connected	160	80	80	30	140	160	60	Not supplied	Supplied as standard

PVS400-NNL 3P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS400-NNL 3P	Front-connected Rear-connected	120	80	80	30	80	80	40	Not supplied	Not supplied

PVS400-NNL 4P, PVS400-NNH 4P

Rear-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS400-NNL 4P PVS400-NNH 4P	Front-connected Rear-connected	120	80	80	30	80	80	40	Not supplied	Not supplied

Insulation distance DC750V-1000V

PVS800-NDL 3P

Front-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS800-NDL 3P	Front-connected Rear-connected	160	80	80	80	140	160	60	Not supplied	Supplied as standard

PVS800-NDL 4P, PVS800-NDH 4P

Front-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS800-NDL 4P PVS800-NDH 4P	Front-connected Rear-connected	160	80	80	80	140	160	60	Not supplied	Supplied as standard

PVS800-NNL 3P

Front-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS800-NNL 3P	Front-connected Rear-connected	120	80	80	80	80	80	60	Not supplied	Not supplied

PVS800-NNL 4P, PVS800-NNH 4P

Front-connected

Rear-connected

Type	Connection	Minimum insulation distance (mm)							Insulating plate	
		A	B	C	D	E	F	G	Front panel side	Mounting plate side
PVS800-NNL 4P PVS800-NNH 4P	Front-connected Rear-connected	120	80	80	80	80	80	60	Not supplied	Not supplied

Accessories

Internally mounted accessories

1. Connection diagrams and terminal numbers 5-2
2. Possible combinations 5-3
3. Ratings data of auxiliary and alarm switches 5-4
4. Shunt trip device (SH) 5-4
5. Undervoltage trip device (UV) 5-4
Externally mounted accessories
6. Motor operators (MC) 5-6
7. External operating handles 5-12
(1) Breaker-mounted (field installable small type) (HB) 5-12
(2) Door-mounted (depth adjustable) (HP) 5-20
8. Toggle holder (HH) and toggle lock (HL) 5-27
9. Terminal covers 5-28
10. Terminal blocks (TF) 5-32

Internally mounted accessories

1. Connection diagrams and terminal numbers

Accessory	Combination symbol	Connection diagram and terminal No.	Remarks			
	$\square \square \square \square$	- With anti-burn switch $\underset{\sim}{\text { S2 }}$	Applicable to MCCB type of "XS". Shunt trips are fitted with anti-burn switches.			
		- Without anti-burn switch ${ }_{\text {c1 }}^{\text {C1 }}$ - $\mathrm{mm}_{\sim}^{\text {C2 }}$	Applicable to TemBreak2 breakers. Shunt trips are continuous rating without anti-burn switches.			
		$\stackrel{D_{0}}{0} \ldots \underbrace{\text { D2 }}$	Applicable to Tem Breakers2.			
		U-mn U2	Applicable to XS1250ND and XS1600ND.			
		$\overbrace{11 / A X_{c 1}}^{12 / A X_{b} 1}$	Ex. 1pc Aux. Switch installed.			
			Ex. 2pcs Aux. Switch installed.			
			Ex. 4pcs Aux. Switch installed.			
	$\\|\\|\\| d$		Ex. 6pcs Aux. Switch installed. This is for MCCB type of "XS".			
			Ex. 1pc Alarm switch installed.			
			Ex. 2pcs Alarm switch installed. * Special application.			
			Ex. 1pc Alarm switch for MCCB type of "XS".			

2. Possible combinations

1000V		PVS160-SDH 4P, PVS250-SDH 4P, PVS160-SNH 4P, PVS250-SNH 4P, PVS160-GDH 4P, PVS250-GDH 4P	PVS400-NDH 4P, PVS400-NNH 4P	PVS800-NDH 4P, PVS800-GDH 4P, PVS800-NNH 4P				
800 V		PVS160-SNL 4P, PVS250-SNL 4P	PVS400-NNL 4P	PVS800-NNL 4P				
750 V	PVE160-SDL 3P	PVS160-SDL 3P, PVS250-SDL 3P, PVS160-SDL 4P, PVS250-SDL 4P, PVS250-SNL 3P	PVS400-NDL 3P, PVS400-NDL 4P, PVS400-NNL 3P	PVS800-NDL 3P, PVS800-NDL 4P, PVS800-NNL 3P				
250~600V	$\begin{aligned} & \text { S160-SD 3P, } \\ & \text { S160-GD 3P, } \\ & \text { S160-SDN 3P } \end{aligned}$	$\begin{aligned} & \text { S250-SD 3P, } \\ & \text { S250-GD 3P, } \\ & \text { S250-SDN 3P } \end{aligned}$	S400-ND 3P	S800-ND 3P, S1000-ND 2P, S1000-ND 3P	XS1250ND 2P, XS1600ND 2P, XS1250ND 3P, XS1600ND 3P	XS2000ND 2P, XS2500ND 2P, XS3200ND 2P, XS2000ND 3P, XS2500ND 3P, XS3200ND 3P		
Number of poles (1)	3	3	3	3	3 (2)	3 (2)		
AX								
AL								
SH								
UV								
		$\begin{array}{\|} \hline \prod: \\| \\ \hline \end{array}$				\square		
\qquad								
$\begin{aligned} & \text { O} \mathrm{AL} \\ & \hline \mathrm{SH} \\ & \hline \end{aligned}$						\square \square		
$\mathbf{A L}$ $\mathbf{U V}$								
$\mathbf{A X}$ $\mathbf{A L}$ $\mathbf{S H}$						\square \square $\\|\\|$		
$\mathbf{A X}$ $\mathbf{A L}$ $\mathbf{U V}$		$\square \square \square$						

Notes:
(1): For the four-pole type, see the column for the three-pole type.
(2) : A breaker with AC UVT is provided with an external UVT controller. See page 5-5.

Internally mounted accessories

3. Ratings data of auxiliary and alarm switches

Ratings of AX and AL

- The applicable load of the switch shall be no larger than the rating and no smaller than the minimum load.

Type of breaker	Standard							For microload (1)		
	AC (V)			DC (V)			Minimum load	DC (V)		Minimum load
	Voltage (V)	Current (A)		Voltage (V)	Current (A)			Voltage (V)	Current (A) Resistive load	
		Resistive load	Inductive load		Resistive load	Inductive load				
S160-SD, S160-GD, S160-SDN, S250-SD, S250-GD, S250-SDN, S400-ND, S800-ND, S1000-ND, PVE160-SDL, PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL, PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH, PVS160-GDH, PVS250-GDH, PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH, PVS800-NDL, PVS800-NNL, PVS800-NDH, PVS800-GDH, PVS800-NNH	480	-	-	250	-	-	$\begin{aligned} & \mathrm{DC} 15 \mathrm{~V} \\ & 100 \mathrm{~mA} \end{aligned}$	30	0.1	$\begin{gathered} \text { DC5V } \\ 1 \mathrm{~mA} \end{gathered}$
	250	3	2	125	0.4	0.05				
	125	3	2	30	3	2				
XS1250ND, XS1600ND, XS2000ND, XS2500ND, XS3200ND	480	3	2	250	0.3	0.3	$\begin{aligned} & \text { DC5V } \\ & 160 \mathrm{~mA} \\ & \text { DC30V } \\ & 26.7 \mathrm{~mA} \\ & \hline \end{aligned}$	30	0.1	$\begin{array}{\|c\|} \hline \text { DC5V } \\ 1 \mathrm{~mA} \\ \text { DC30V } \\ 1 \mathrm{~mA} \\ \hline \end{array}$
	250	5	5	125	0.6	0.6				
	125	5	5	30	5	4				

Note: (1) This is a custom-made product. When ordering for this product, specify that it is intended for microlead use.
Note: (2) The inductive load means power factor of no smaller than 0.4 for AC and time constant of no larger than 7 ms for DC.

4. Shunt trip device (SH)

Ratings of SHT

Notes:

(3): Exclusive use for 200 V class and 400 V class.
(1) The permissible voltage range is from 70% to 110% of the rated voltage. Ensure that the voltage does not drop exceeding the permissible voltage range when SHT is actuated.
(2) Breaker contacts usually start opening within 30 ms after the rated voltage is applied to the breaker.

5. Undervoltage trip device (UV)

(1)Ratings of UVT with Inst

Type of breaker	Power supply capacity, VA (1)				Exciting current, mA (1)			Connection diagram and terminal No.
	Rated voltage	AC (V)			DC (V)			
		100-120	200-240	380-450	24	100-120	200-240	
S160-SD, S160-GD, S160-SDN, S250-SD, S250-GD, S250-SDN, PVE160-SDL, PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL, PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH, PVS160-GDH, PVS250-GDH		1.4	1.5	2.3	23	10	3.5	$\mathrm{D}_{0} \ldots \ldots m \mathrm{C}_{0}$
S400-ND, PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH		1.4	2.8	2.3	23	10	10	

Note: (1): No UVT controller is required.
(1) Tripping voltage is from 35% to 70% of the rated voltage. Resettable voltage is 85% or less of the rated voltage.

Type of breaker	Power supply capacity, VA (1)						$\begin{gathered} \text { Exciting current, mA } 1 \text {) } \\ \text { DC (V) } \end{gathered}$			Connection diagram and terminal No.
	AC (V)									
	voltage $100-110$	115-120	200-220	230-240	380-415	440-450	24	100-120	200-240	
S800-ND, S1000-ND, PVS800-NDL, PVS800-NNL, PVS800-NDH, PVS800-GDH, PVS800-NNH	1.5	1.6	2.4	2.9	2.1	2.3	29	13	11	D1_mm ${ }_{0}^{\text {D2 }}$

Note: (1): No UVT controller is required
(1) Tripping voltage is from 35% to 70% of the rated voltage. Resettable voltage is 85% or less of the rated voltage.

(2)Ratings of UVT with Inst

Type of breaker	Power supply capacity, VA (1)				Exciting current, mA (1)			Connection diagram and terminal No.
	Rated voltage	AC (V)			DC (V)			
		100-120	200-240	380-450	24	100-115	200-230	For DC
XS1250ND, XS1600ND		-	-	-	26	9.2	48	
XS2000ND, XS2500ND, XS3200ND		-	-	-	-	-	-	m

Notes: (1): No UVT controller is required.
(1) Tripping voltage is from 35% to 70% of the rated voltage.

Resettable voltage is 85% or less of the rated voltage.
(2) The UVT consists of a tripping mechanism and mechanism of maintain handle at OFF position when without the control voltage.

Please reset the breaker before turning the handle to ON position.

Externally mounted accessories

1. Motor operators (MC)

(1) T2MC

Feature

\star Installation and removal ease

T2MC25L: Simply rotate two knobs allows the motor operator to be installed on or removed from the breaker.
T2MC40/80: The compact and lightweight design enables easy installation and removal.

High-speed, stable actuation

The operating time as short as up to 0.1 second makes it possible to use the motor operators for synchronized closing of breakers.

Silent operation

T2MC25L use a direct drive system, providing operational silence.

"Lock-in off" capability

This capability allows the breaker to be padlocked in the OFF state. Up to thee padlocks with a 5 to 8 mm hasp diameter can be used. Padlocks are not supplied.

Spring charged type

(T2MC40 / T2MC80)

Ratings and Specifications

	T2MC25L	T2MC40	T2MC80
Type of breaker	S250-SD, S250-GD, S250-SDN, PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL, PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH, PVS160-GDH, PVS250-GDH	S400-ND, PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH	S800-ND, S1000-ND, PVS800-NDL, PVS800-NNL, PVS800-NDH, PVS800-GDH PVS800-NNH
Rated operational voltage (1)	$A C 100-110 \mathrm{~V}$ ODC24V AC200-220V -DC100-110V AC230-240V 	AC $100-240 \mathrm{~V}$ DC $24-48 \mathrm{~V}$ DC $100-120 \mathrm{~V}$	AC100-240V DC24-48V DC100-120V
Peak AC100-110V	4.5/8	-/2.3 (ON) 1.4/3.7 (OFF,RESET)	-/2.2 (ON) 1.7/3.5 (OFF,RESET)
steady-state/ ${ }^{\text {AC200-220V }}$	4/8	-/2.3 (ON) 1.1/3.5 (OFF,RESET)	-/2.2 (ON) 1.3/3.5 (OFF,RESET)
AC230-240V	3.5/7	-/2.3 (ON) 1.1/3.5 (OFF,RESET)	-/2.2 (ON) 1.3/3.5 (OFF,RESET)
DC24V	18/26	-/7.2 (ON) 3.9/8.1 (OFF,RESET)	-/12 (ON) 6.0/11.5 (OFF,RESET)
DC48V	12/18	-/7.2 (ON) 2.0/5.1 (OFF,RESET)	-/7 (ON) 3.2/6.5 (OFF,RESET)
DC100-110V	2.2/6	-/2.4 (ON) 1.2/3.8 (OFF,RESET)	-/2.2 (ON) 1.3/3.5 (OFF,RESET)
DC200-220V	2.2/5.5	-	1 -
Operation method	Motor driven (direct drive system)	Spring driven	Spring driven
Operating time, s ON	0.1	0.1	0.1
at rated voltage OFF/RESET	0.1 (3)4)	1.53 (4)	1.5(3)(4)
Operating switch ratings	100 V 0.1 A (Open voltage/current: $44 \mathrm{~V} / 4 \mathrm{~mA}$)(5)	(Open voltage/current: $48 \mathrm{~V} / 1 \mathrm{~mA}$)	100 V 0.1 A (Open voltage/current: $48 \mathrm{~V} / 1 \mathrm{~mA}$)
Power supply required	300 VA or higher	300 VA or higher	300 VA or higher
Dielectric withstand voltage (for one minute)	AC1500V (AC 1000 V for DC $24 / 48 \mathrm{~V}$)	AC1500V (AC 1000 V for DC $24 / 48 \mathrm{~V}$)	AC1500V (AC 1000 V for DC $24 / 48 \mathrm{~V}$)
Weight	1.4 kg	3.5 kg	3.5 kg

[^3]
Motorized operation

The motor operator has an input-signal self-hold circuit; closing the ON or OFF switch (see circuit diagrams shown bellow) momentarily allows activating the motor operator. To reset the tripped breaker to the OFF position, close the OFF (RESET) switch.
The voltage presence LED indication is on when the power is supplied to the motor operator.

■ Auto reset feature (optional)

The auto reset feature allows the breaker to be automatically reset approx. 1.5 seconds after the breaker trips open. This option contains auto-reset switches and does not require to use auxiliary or alarm switches installed in the breaker.
Note 1: that after the thermal OCR trips a thermal-magnetic breaker, the breaker cannot be immediately closed though it can be auto-reset. Wait for a few minutes after the tripping and provide a close signal to the breaker.
Note 2: Do not use an alarm switch to reset breakers.
This option resets the tripped breaker automatically, regardless of the cause of the tripping.

Breakers position in tripped state

Breakers position when the breaker has tripped differs depending on the motor operator being of standard type or being equipped with the auto reset feature (optional), as shown in the table below:
T2MC25L

Cause of trip		Breakers position in tripped state	
	Standard type	With auto reset feature	
Manually tripped	TRIP	(OFF)*	
SHT/UVT			
Overcurrent			

* : The motor operator automatically provides OFF (reset) operation to the breaker.

T2MC40 / T2MC80

Cause of trip	Breakers position in tripped state	
	Standard type	With auto reset feature
Manually tripped	(OFF) *	$\bigcirc(\mathrm{OFF}) *$
SHT/UVT	TRIP	
Overcurrent		

* : The motor operator automatically provides OFF (reset) operation to the breaker.

Manual operation

T2MC25L: Pull the operating handle out. Rotating the handle counterclockwise turns ON the breaker and clockwise turns OFF or resets the breaker.
T2MC40/80 : Switch to Manual operation from Motorized operation by Select lever. Use the spring charging handle to charge the spring and press the ON or TRIP button.
T2MC40/80 : When the TRIP button is pressed while the control power is supplied, the breaker turns OFF and if equipped with an alarm switch, it provides an output signal.
Press the TRIP button all the way in. Pressing the TRIP button halfway causes the breaker to go off without tripping, resulting in no alarm signal delivered even if the breaker is equipped with an alarm switch.

Operation precautions

1. Ensure that the actual operation voltage ranges from 85% to 110% of the rated one.
2. Use operation switches whose ratings and power capacity is as specified in the "Ratings and Specifications" table on the previous page.
3. Ensure an operating time of 50 msec or more when operating switches to turn on/off the breaker. A shorter operating time may result in failure in operating the breaker. In such a case, repeat the operation.
4. Do not continuously apply ON/OFF operating signals. ON/OFF signals must be separated by 0.3 sec or more. With the T2MC40/80, OFF and RESET operations must be 1.5 sec or more apart.
5. With the T2MC25L, do not connect alarm switches (AL) to the control circuit (OFF, ON or COM terminals). Doing so may cause the motor operator to fail to work.
6. If the motor operator is used in conjunction with a shunt trip device (SH), ensure that voltage supply to the SHT is shut off after the reset operation ends.
7. To operate multiple motor operators in batch, do not directly connect their control terminals in series, but through a separate relay for each. Otherwise, sneak circuits may form and cause the operators to fail to work.
8. Use noise filters if the control power supply of the motor operator is shared by peripheral devices. Otherwise, power supply noise may cause malfunction of the peripheral devices.

Control circuit diagrams of motor operators

Externally mounted accessories

1. Motor operators (MC)

(2) T1MC

Ratings and Specifications

			T1MCX6
Applicable breakers			XS1250ND, XS1600ND
Rated operational voltage (1)			- AC100-115V - AC200-230V - DC100-110V - DC24V
Peak steady-state/ starting current, A (2)	AC100-115V	ON	-/3.1
		OFF, RESET	1.8/6.0
	AC200-230V	ON	-/1.2
		OFF, RESET	1.0/3.2
	DC100-110V	ON	-/0.8
		OFF, RESET	1.1/4.2
	DC24V	ON	-/4.5
		OFF, RESET	4.0/12.0
Operation method			Spring charged
Operating time, s @ rated voltage	ON (Max)		0.06
	OFF/RESET		3 (3)
Power supply required			300 VA
Dielectric withstand voltage (for one minute)			AC1500V (4)
Weight			6.4 kg

[^4] or AC400-460V
(2) : The currents shown are the maximum values at the maximum rated operational voltage
(3) : The operating time is the value when the rated operational voltage is supplied. Loss of the control power in this operating time may cause the motor operator to fail to work.
(4) : Dielectric withstand voltage for DC 24 V motor is AC 500 V .

Features

\star Clear status indication

Color indication: Red means ON, green OFF and white TRIPPED.

\star Quick closing

Energy in a charged spring closes the breaker 60 msec or less.
High-speed, time-stable operation is ensured after multiple times of closing cycles.

\star Equipped with anti-pumping circuit

When the closing signal is applied, TRIP-RESET-ON cycles are not repeated even though the cause of tripping is in the breaker.

\star Ease of manual ON-OFF operation

Simply pressing the ON or OFF button closes or opens the breaker.

"Lock-in off" capability

This capability allows the breaker to be padlocked in the OFF state.
Padlocks are not supplied.

Operation mechanism

Motorized operation

Breaker ON

Closing the ON switch activates the latch release coil (LRC), thereby releasing the closing spring to turn the breaker ON.

■Breaker OFF (RESET)

Closing the OFF/RESET switch activates the (Y) control relay, thereby starting the motor to turn the breaker OFF. At the same time, the closing spring is charged. The motor is deenergized when the breaker turns OFF (RESET).

■Breaker auto-reset (optional)

The auto-reset option uses an auto-reset switch (alarm switch) through which the closing spring is charged and the breaker is reset automatically after the breaker trips open. This option both for XMD and T2MC will be factory wired.

Notes: 1. Installable alarm switch will be only 1 piece.
2. When the breaker is equipped with the auto-reset option, a signal self-hold circuit is required because the signal provided by the alarm switch is a pulse

Manual operation *

■Breaker ON • OFF (RESET)

Pulling down the operating lever turns the breaker ON and OFF/REST alternately.
The handle returns to the original position when released.
※With auto-charge/discharge feature:
When manual ON operation is performed while the control power is applied, the handle switch (HS) operates to discharge the closing spring. OFF operation causes the closing spring to be charged.
When manual ON or OFF operation is performed while the control power is lost, and afterwards the control power is recovered, the closing spring is discharged or charged in the same manner as described above.
When the auto-charge/discharge action is in progress, mechanical noises will be heard. The noises however do not mean a failure.

Control circuit diagram

Operation Precautions

- Ensure that the actual operation voltage ranges from 85% to 110% of the rated one.
- The currents shown are the maximum values at the maximum rated operational voltage.
- When conducting the dielectric withstand voltage test, apply voltage between the control terminal group and ground. Ensure that the test voltage does not exceed AC 1500 V (AC 500 V if the rated operation voltage is DC 24 V).
- If the breaker is equipped with the UVT device, ensure that the UVT device is reset before providing a closing signal to the breaker.
- It takes up to three seconds to complete motorized OFF operation. If the breaker requires to be immediately opened from a remote location in an emergency, add the SHT or UVT device to the breaker for remote electrical tripping.
- When a thermal-magnetic breaker is tripped by the thermal OCR, wait for a few minutes; then reset the breaker.
- Make sure that the current and switching capacities of the operation switch are appropriate for the application.
- Avoid repeated and continuous applications of the operation power supply to the motor operator.
- Use noise filters if the control power supply of the motor operator is shared by peripheral devices. Otherwise, power supply noise may cause malfunction of the peripheral devices.
- Be sure to apply power to control power terminal MP1. If the breaker is turned ON or OFF manually without power applied to MP1, the auto charge/discharge feature is disabled, and thus the motor operator will not be activated next time. In such a case, applying the rated operation voltage between control power terminals MP1 and MP2 will enable the auto charge/discharge feature.

Externally mounted accessories

1. Motor operators (MC)

(3) XMB

Motor driven type

Ratings and Specifications

	XMB10	XMB12	
Series/type of breaker	XS2000ND, XS2500ND		XS3200ND

Notes: (1) Permissible operating range is 85 to 110%. A power transformer is available as option for AC380V or AC400-460V.
(2) Auto reset require to use auxiliary switch (1b) installed in the breaker. If the number of auxiliary switches is insufficient, actuate an external relay via an auxiliary switch (1a) and use the relay contact (1b) for auto reset.
(3) The currents shown are the maximum values at the maximum rated operational voltage.
(4) The operating time assume the motor operator is supplied with the rated operation voltage. Loss of the motor operator to fail to work.
(5) The motor operator is short-time rated. The number of continuous switching (ON-OFF) cycles must not exceed 10 . After any 10 continuous switching cycles, provide a pause of at least 15 minutes to the motor operator for cooling.

Operation mechanism

Motorized operation

-Breaker ON

Closing the ON switch throws the motor switch from contact status " $1-2$ " to " $3-2$ ", thereby activating the X relay and energizing the motor operator to turn the breaker ON. When the breaker turns ON, the motor switch is thrown from contact status " $3-2$ " to " $1-2$ ", thereby releasing the X relay to de-energize and stop the motor operator.

■Breaker OFF

Closing the OFF/RESET switch throws the motor switch from contact status " $3-2$ " to " $1-2$ ", thereby activating the Y relay and energizing the motor operator to turn the breaker OFF. When the breaker turns OFF, the motor switch is thrown from contact status " $1-2$ " to " $3-2$ ", thereby releasing the Y relay to de-energize and stop the motor operator.

■Breaker RESET

To reset the tripped breaker to the OFF position, close the OFF/RESET switch.

■Breaker auto-reset (optional)

Using the AUTO RESET auxiliary switch (1b) of the breaker allows resetting the breaker automatically when the breaker trips open.
Note: Do not use a normally closed switch as the ON switch. Doing so will result in "ON-TRIP-RESET-ON" cycles repeated unless the cause of tripping is removed.

Manual operation

Mount the operating handle onto the mounting shaft located on the front of the motor operator and rotate the shaft to turn the breaker ON or OFF. Rotating the handle anti-clockwise turns ON the breaker and clockwise turns OFF or resets the breaker. When the operating handle is mounted, the motorized operation mechanism is disengaged. Removing the handle engages the motorized operation mechanism to enable motorized operation.

■Handle switch

With the addition of a handle switch, the motor operator mechanism can be automatically brought to the manually operated position (ON or OFF) on removal of the handle, providing that the motor operator is powered up.

Operation precautions

- When the breaker is ON and is then tripped, the ON/OFF indicator on the motor operator will indicate ON until the breaker is reset. Note: The breaker's condition may differ.
- Use noise filters if the control power supply of the motor operator is shared by peripheral devices. Otherwise, power supply noise may cause malfunction of the peripheral devices.

Control circuit diagrams of motor operators

Externally mounted accessories

2. External operating handles

(1) Breaker-mounted (field installable small type) (HB)

The external operating handle is a tool that allows the breaker installed in a switchboard to be operated from outside and complies with IEC 60204-1(IEC 60204-1).
The breaker-mounted type external operating handle is designed to be mounted directly to the breaker body.

Outer view

Types
T2HB16L
T2HB25L

Mounting instructions

The external operating handle has not been mounted on the breakers.
For details on how to mount the handle, see the Operating Instructions packaged with the product.

[1] Mounting of external operating handle assembly

- Make sure that the breaker is in the OFF position.
- Put the external operating handle assembly onto the breaker in place so that the breaker handle is engaged with the handle catch of the assembly.
Rotate two knobs to secure the handle assembly.

[2] Installation of handle escutcheon and latch plate

- Drill holes in the panel according to the panel cutout dimensions.
Sandwich the panel between the handle escutcheon and latch plate and temporarily tighten using the supplied screws.
- Close the panel.

Make adjustment so that the gap between the handle assembly and handle escutcheon is even and the assembly is not inclined against the breaker.

Breaker mounting direction

The ON and OFF positions of the handle and the positions of drilled holes in the panel do not need to be changed depending on the breaker mounting direction. The upper power supply type is standard. If a non-standard type is required, state the type when ordering.

R : Right power supply type	U: Upper power supply type (standard)	L: Left power supply type

[^5]
Panel lock mechanism

The external operating handle keeps the panel door locked when in the 'ON' position. There are two types, RESET Open and OFF Open.

(1) Reset Open (Standard type)

The handle is turned to the RESET OPEN position to open the panel door.

(2) OFF Open

The handle is turned to the OFF position to open the panel door.

- Panel lock release knob

The release knob enables the panel door to be opened with the handle in the 'ON' position. To release: turn the release knob in the direction of anti-clockwise with a flat-bladed screwdriver.

- Safety interlock (Standard)

The safety interlock prevents the breaker from turning ON as long as the panel is open. This interlock can be released using the hook lever.

Toggle lock mechanism

- Padlock (Standard)

This mechanism allows the breaker to be padlocked in the ON or OFF position.
Padlocks are not supplied.
Up to three padlocks can be installed.

※ : Padlocking in OFF position only required by IEC 60204-1 is also available.

Protection degree IEC 60529

IP30	standard specification
IP50	optional, with a dust proof packing
IP55	special specification

To be stated when ordering

*: standard specification

Externally mounted accessories

2. External operating handles

T2HB16L

Applicable breaker types
S160-SD, S160-GD, S160-SDN,
PVE160-SDL

L : Handle Frame Centre Line
£: Handle Centre Line

- Positions of the hinge and handle as seen from the load side of the breaker. Ensure that the hinge is positioned in the $\sqcap / \backslash \backslash$ area.

T2HB25L

H: Handle Frame Centre Line
£: Handle Centre Line

Applicable breaker types

S250-SD, S250-GD, S250-SDN,
PVS160-SDL, PVS250-SDL,
PVS160-SNL, PVS250-SNL,
PVS160-SDH, PVS250-SDH,
PVS160-SNH, PVS250-SNH,
PVS160-GDH, PVS250-GDH

- Outline dimensions

- Panel cutout dimensions

- Positions of the hinge and handle as seen from the load side of the breaker. Ensure that the hinge is positioned in the $/ / / 7$ area

Externally mounted accessories

2. External operating handles

(2) Breaker-mounted (field installable small type) (HB)

The external operating handle is a tool that allows the breaker installed in a switchboard to be operated from outside and complies with IEC 60204-1.
The breaker-mounted type external operating handle is designed to be mounted directly to the breaker body.

Outer view

Types
T2HB40
T2HB80

Mounting instructions

The external operating handle has not been mounted on the breakers. For details on how to mount the handle, see the Operating Instructions packaged with the product.
[1] Mounting of external operating handle assembly

- Make sure that the breaker is in the OFF position.
- Put the external operating handle assembly onto the breaker in place so that the breaker handle is engaged with the handle catch of the assembly.
Rotate two knobs to secure the handle assembly.
- For T2HB40 and T2HB80, tighten the bolts to secure the handle assembly.

[2] Installation of handle escutcheon and latch plate
- Drill holes in the panel according to the panel cutout dimensions.
Sandwich the panel between the handle escutcheon and latch plate and temporarily tighten using the supplied screws.
- Close the panel.

Make adjustment so that the gap between the handle assembly and handle escutcheon is even and the assembly is not inclined against the breaker.

Breaker mounting direction

The ON and OFF positions of the handle and the positions of drilled holes in the panel do not need to be changed depending on the breaker mounting direction. The upper power supply type is standard. If a non-standard type is required, state the type when ordering.

R : Right power supply type	U: Upper power supply type (standard)	L: Left power supply type

[^6]
Panel lock mechanism

The external operating handle keeps the panel door locked when in the 'ON' position. There are two types, RESET Open and OFF Open.

(1) Reset Open (Standard type)

The handle is turned to the RESET OPEN position to open the panel door.

(2) OFF Open

The handle is turned to the OFF position to open the panel door.

- Panel lock release knob (Standard)

The release knob enables the panel door to be opened with the handle in the 'ON' position. To release: turn the release knob in the direction of anti-clockwise with a flat-bladed screwdriver.

- Safety interlock (Standard)

The safety interlock prevents the breaker from turning ON as long as the panel is open. This interlock can be released using the hook lever.

Toggle lock mechanism

- Padlock (Standard)

This mechanism allows the breaker to be padlocked in the ON or OFF position.
Padlocks are not supplied.
Up to three padlocks can be installed.

A	Padlock dimensions (mm)		
	Type of handle	A	Dia.
?	T2HB	13 min	¢5.5-8

- Key lock (Optional)

Key locking is possible in the ON or OFF position.

※ : Padlocking in OFF position only required by IEC 60204-1 is also available.
Please specify when ordering.

To be stated when ordering

*: standard specification

Externally mounted accessories

2. External operating handles

Outline dimensions

T2HB40

Applicable breaker types	A (mm)	B (mm)
S400-ND, PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH	150 ± 2	97

ASL: Arrangement Standard Line
L: Handle Frame Centre Line
£: Handle Centre Line

ASL: Arrangement Standard Line
H: Handle Frame Centre Line
E: Handle Centre Line
T2HB80

Applicable breaker types	A (mm)
S800-ND, S1000-ND,	
PVS800-NDL, PVS800-NNL, PVS800-NDH	150 ± 2
PVS800-GDH, PVS800-NNH	

Externally mounted accessories

2. External operating handles

(3) Door-mounted (depth adjustable) (HP)

Door-mounted type external operating handles allow breakers installed in control centers or switchboards to be manually operated from outside and complies with IEC 60204-1.
This handle assembly consists of an operation mechanism section which is to be installed in the breaker body, a handle section which is to be installed in a panel and a square shaft which couples both the sections.

Outer view

Operation direction of handles

Rotate the operating handle clockwise to turn the breaker on.

Rotate clockwise to turn the breaker ON

Breaker mounting direction

The ON and OFF positions of the handle and the positions of drilled holes in the panel do not need to be changed depending on the breaker mounting direction.

Panel lock mechanism

The external operating handle keeps the panel door locked when in the 'ON' position. There are two types, RESET Open and OFF Open.

(1) Reset Open (Standard type)

The handle is turned to the RESET OPEN position to open the panel door.

(2) OFF Open

The handle is turned to the OFF position to open the panel door.

- Panel lock release knob (standard specification)

The release knob enables the panel door to be opened with the handle in the 'ON' position. To release: turn the release knob in the direction of anti-clockwise with a flat-bladed screwdriver.

Protection degree IEC 60529

IP54	standard specification
IP65	special specification

Toggle lock mechanism

- Padlock (Standard)

This mechanism allows the breaker to be padlocked in the ON or OFF position.
Padlocks are not supplied.
Up to three padlocks can be installed.

Dia				
Q	Padlock dimensions (mm)			
Type of handle	A	Dia.		
T 2 HP	13 min	$\varnothing 5.5-8$		

- Key lock (Optional)

Key locking is possible in the ON or OFF position.
※ : Padlocking in OFF position only required by IEC 60204-1 is also available.
Please specify when ordering.

Dimensions of square shafts available

There are the following shaft dimensions available. Select an appropriate shaft depending on the mounting position of the breaker. Cut the shaft to an appropriate length if required. Coat the cut end faces of the shaft with an anti-corrosion paint.

Shafts order codes	LA (mm)	LB (mm)
T2PS251	121	
T2PS252	221	8
T2PS253	321	
T2PS254	421	
T2PS401	147.5	
T2PS402	247.5	14
T2PS403	347.5	
T2PS404	447.5	

To be stated when ordering

[^7]
Externally mounted accessories

2. External operating handles

L: Handle Frame Centre Line
Φ : Handle Centre Line

Outline dimensions

T2HP16L

- Outline dimensions

- Panel cutout dimensions

- Positions of the hinge and handle as seen from the load side of the breaker. Ensure that the hinge is positioned

Applicable breaker types	A (1)	B	c	D	Square shaft applicable	Shaft support
S160-SD, S160-GD, S160-SDN, PVE160-SDL	229 min .	56	107	186	T2PS251	Yes
	243 max.	70	121	186		Yes
	343 max.	170	221	186	T2PS252	Yes
	443 max.	270	321	186	T2PS253	Yes
	543 max.	370	421	186	T2PS254	

Note (1):
"Min (minimum)" means the minimum possible distance from the panel surface to the breaker mounting surface, which can be formed by cutting the square shaft "Max (maximum)" means the maximum distance of the same section, which is formed with no cutting of the square shaft.

Outline dimensions

T2HP25L

- Panel cutout dimensions

Applicable breaker types	A (1)	B	C	D	Square shaft applicable	Shaft support
S250-SD, S250-GD, S250-SDN,	229 min .	56	107	186	T2PS251	Yes
PVS160-SDL, PVS250-SDL,	243 max.	70	121	186		Yes
PVS160-SNL, PVS250-SNL, PVS160-SDH, PVS250-SDH,	343 max.	170	221	186	T2PS252	Yes
PVS160-SNH, PVS250-SNH,	443 max.	270	321	186	T2PS253	Yes
PVS160-GDH, PVS250-GDH	543 max.	370	421	186	T2PS254	

Note (1):

"Min (minimum)" means the minimum possible distance from the panel surface to the breaker mounting surface, which can be formed by cutting the square shaft. "Max (maximum)" means the maximum distance of the same section, which is formed with no cutting of the square shaft.

A: Distance from the panel surface to the breaker mounting surface
B: Length of the tube used to cover the square shaft
C: Length of the square shaft used
D: Distance from the tip of the shaft support to the breaker mounting surface

Externally mounted accessories

2. External operating handles

Outline dimensions

T2HP40

ASL: Arrangement Standard Line
压: Handle Frame Centre Line £: Handle Centre Line

- Panel cutout dimensions

Positions of the hinge and handle as seen from the load side of the breaker. Ensure that the hinge is positioned in the $\nabla / / \lambda$ area.

Applicable breaker types	A (1)	B	C	D	Square shaft applicable	Shaft support
S400-ND, PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH	270 min.	12	107.5	-	T2PS401	Non
	310 max. (2)	52	147.5	-		
PVS400-NDH, PVS400-NNH	340 min . (2)	10	177.5	261	T2PS402	Yes
	410 max.	80	247.5	261		
	510 max.	180	347.5	261	T2PS403	
	610 max.	280	447.5	261	T2PS404	

Notes:
(1). "Min (minimum)" means the minimum possible distance from the panel surface to the breaker mounting surface, which can be formed by cutting the square shaft. "Max (maximum)" means the maximum distance of the same section, which is formed with no cutting of the square shaft.
(2). When dimension A is in a range of 310 mm to 340 mm , cut square shaft T2PS402 to an appropriate length and use the shaft without shaft support

A: Distance from the panel surface to the breaker mounting surface
B: Length of the tube used to cover the square shaft
C: Length of the square shaft used
D: Distance from the tip of the shaft support to the breaker mounting surface

Outline dimensions

T2HP80

- Outline dimensions

Applicable breaker types	A (1)	B	C	D	Square shaft applicable	Shaft support
S800-ND, S1000-ND,	270 min.	12	107.5	-	T2PS401	Non
PVS800-NDL, PVS800-NNL,	310 max. (2)	52	147.5	-		
PVS800-NDH, PVS800-GDHPVS800-NNH	340 min . (2)	10	177.5	261	T2PS402	Yes
	410 max.	80	247.5	261		
	510 max.	180	347.5	261	T2PS403	
	610 max.	280	447.5	261	T2PS404	

Notes:
(1). "Min (minimum)" means the minimum possible distance from the panel surface to the breaker mounting surface, which can be formed by cutting the square shaft. "Max (maximum)" means the maximum distance of the same section, which is formed with no cutting of the square shaft.
(2). When dimension A is in a range of 310 mm to 340 mm , cut square shaft T2PS402 to an appropriate length and use the shaft without shaft support.

A: Distance from the panel surface to the breaker mounting surface
B: Length of the tube used to cover the square shaft
C: Length of the square shaft used
D: Distance from the tip of the shaft support to the breaker mounting surface

Externally mounted accessories

2. External operating handles

Outline dimensions

T1HPX6

Applicable breaker types	A (1)	B	C	D	Square shaft applicable	Shaft support
XS1250ND, XS1600ND	387min.	52	147.5	337	T2PS401	Non
	487max.	80	247.5	337	T2PS402	Yes
	587max.	180	347.5	337	T2PS403	
	687max.	280	447.5	337	T2PS404	

Note (1):
"Min (minimum)" means the minimum possible distance from the panel surface to the breaker mounting surface, which can be formed by cutting the square shaft. "Max (maximum)" means the maximum distance of the same section, which is formed with no cutting of the square shaft.

B: Length of the tube used to cover the square shaft
D: Distance from the tip of the shaft support to the breaker mounting surface

3. Toggle holder (HH) and toggle lock (HL)

Toggle holder (HH)

Simply fitting the toggle holder onto the breaker toggle disables breaker operation without using padlocks.

Toggle lock (HL)

The toggle lock is a tool that locks the breaker on or off. When an overcurrent occurs, the breaker will trip even if the breaker toggle is locked in the ON position.
(Use commercially available padlocks).

Toggle holders/toggle locks

Type of breaker	Toggle holder		Figure	Toggle lock		Figure
	Order codes	Marking codes		Order codes	Marking codes	
$\begin{aligned} & \text { S160-SD, S160-GD, S160-SDN, } \\ & \text { PVE160-SDL } \end{aligned}$	T2HH25L	T2HH25L	4	T2HL25L	T2HL25L	1
S250-SD, S250-GD, S250-SDN, PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL, PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH, PVS160-GDH, PVS250-GDH	T2HH25L	T2HH25L	4	T2HL25L	T2HL25L	1
S400-ND, PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH, S800-ND, S1000-ND, PVS800-NDL, PVS800-NNL, PVS800-NDH PVS800-GDH, PVS800-NNH	$\begin{gathered} \mathrm{T} 2 \mathrm{HL} 40 \\ \text { (1) } \end{gathered}$	T2HL40	2	T2HL40	T2HL40	2
XS1250ND, XS1600ND	XKC9	XKC9	3 ($\ell=86)$	XKC9	XKC9	3 ($\ell=86$)
XS2000ND, XS2500ND, XS3200ND	XKC10	XKC10	3 ($\ell=94$)	XKC10	XKC10	3 ($\ell=94$)

Notes: (1). Same as toggle lock.

Fig. 4

Externally mounted accessories

4. Terminal covers

The terminal covers supplied with the DC MCCB (250 AF or less) must be used for MCCB installation.
There are two types of terminal covers and options CF for front-connected breakers, CR for rear-connected and plug-in breakers.

(1) CF for front-connected breakers

Plug-in mounted version
This version can be mounted simply by being plugged in the breaker body.

Screw-mounted version

The terminal covers are mounted to the breakers using tapping screws.

Types and dimensions of terminal covers, units in mm

CF for front-connected breakers

Types of breakers	Terminal cover				A		B		C (2)		D (2)		Colour of cover G:Gray	Mounting version	
	Size	Note:	Order codes (1)	Marking codes	$\begin{gathered} 3 \\ \text { poles } \end{gathered}$	$\begin{gathered} 4 \\ \text { poles } \end{gathered}$	$\begin{gathered} 3 \\ \text { poles } \end{gathered}$	$\begin{gathered} 4 \\ \text { poles } \end{gathered}$	$\begin{gathered} 3 \\ \text { poles } \end{gathered}$	$\begin{gathered} 4 \\ \text { poles } \end{gathered}$	$\begin{gathered} 3 \\ \text { poles } \end{gathered}$	$\begin{gathered} 4 \\ \text { poles } \end{gathered}$		Plug-in mounted	Screwmounted
S160-SD, S160-GD, S160-SDN, PVE160-SDL	Large		T2CF 12L * SLNG	-	75	-	50	-	61	-	60.3	-	G	\bigcirc	-
S250-SD, S250-GD, S250-SDN, PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL, PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH, PVS160-GDH, PVS250-GDH	Large	(3)	T2CF 25L * SLNG	T2CF25L * SL	105	140	55	55	59	59	57.5	57.5	G	\bigcirc	-
S400-ND,	Large	(4)	T2CF40 * SWNG	T2CF40 * SW	180	240	110	114	97	98	96	98	G	\bigcirc	-
PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH	Large	(5)	T2CF40 * SLNG	T2CF40 * SL	140	185	85	85	97	97	94.5	94.5	G	\bigcirc	-
S800-ND, S1000-ND, PVS800-NDL, PVS800-NNL, PVS800-NDH, PVS800-NNH	Large		T2CF80 * SLNG	TPR-5BA	215	285	130	130	$\begin{gathered} 99.5 \\ (102) \end{gathered}$	$\begin{gathered} 99.5 \\ (102) \end{gathered}$	$\begin{gathered} 99 \\ (101.5) \end{gathered}$	$\begin{gathered} 99 \\ (101.5) \end{gathered}$	G	-	\bigcirc

Notes:

(1). The asterisk indicates the number of poles. Please state the number of poles at the asterisk position when ordering.
(2). Values in parentheses indicate the distance to the head of terminal cover mounting screws.
(3). The connection wire size must use less than $100 \mathrm{~mm}^{2}$. The connection wire size $150 \mathrm{~mm}^{2}$ or more not available.
(4). Applicable to 3-pole breakers with spread extension bars.
(5). Applicable to the breakers without extension bars.

Externally mounted accessories

4. Terminal covers

(2) CR for rAear-connected and plug-in breakers

Plug-in mounted version

This version can be mounted simply by being plugged in the breaker body.

Fig. 1

Screw-mounted version

The terminal covers are mounted to the breakers using tapping screws.

Fig. 2

- To be stated when ordering
- Please state the order codes on the next page if ordering separately from the breaker.

Types and dimensions of terminal covers, units in mm

Types of breakers	Order codes (1)	Marking codes	A		B		B'	C (2)		D (2)		Colour of cover B: Black G: Gray	Mounting version		
			3 poles	4 poles	3 poles	4 poles		3 poles	4 poles	3 poles	4 poles		Plug-in mounted	Screwmounted	Fig.
S160-SD, S160-GD, S160-SDN, PVE160-SDL	T2CR12L * SG	-	75	100	5.3	5.3	-	61	61	60.3	60.3	G	\bigcirc	-	1
S250-SD, S250-GD, S250-SDN, PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL, PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH, PVS160-GDH, PVS250-GDH	T2CR25L * SG	-	105	140	2.3	2.3	5.3	58.6	58.6	57.1	57.1	G	\bigcirc	-	1
S400-ND, PVS400-NDL, PVS400-NNL, PVS400-NDH, PVS400-NNH	T2CR40 * SG	T2CR40 *S	140	185	3	3	5	97	97	93	93	G	\bigcirc	-	1
S800-ND, S1000-ND, PVS800-NDL, PVS800-NNL, PVS800-NDH PVS800-GDH, PVS800-NNH	T2CR80 * SG	XPS6	206	280	15	18	-	$\begin{gathered} 101 \\ (103.5) \end{gathered}$	$\begin{gathered} 99 \\ (101.5) \end{gathered}$	$\begin{aligned} & 100.5 \\ & (103) \end{aligned}$	$\begin{gathered} 98 \\ (100.5) \end{gathered}$	G	-	\bigcirc	2

Notes:
(1). The asterisk indicates the number of poles. Please state the number of poles at the asterisk position when ordering.

One set includes one terminal cover fot the ON side and one for the OFF side.
(2). Values in parentheses indicate the distance to the head of terminal cover mounting screws.

Externally mounted accessories

5. Terminal blocks (TF)

18 mm width 6 terminals
Vertical leading type (T2TF00L) with 100/125A frame MCCB

18mm width 6 terminals

Vertical leading type (T2TF00L) with 125/225/250A frame MCCB

18 mm width 6 terminals

Vertical leading type (T2TFX0) with 400A frame MCCB

18 mm width 6 terminals

Vertical leading type (T2TFX0) with 800/1000A frame MCCB

Externally mounted accessories

5. Terminal blocks (TF)

Horizontal leading type (LTF) with 1250 to 3200A frame MCCB
Mounting position/typical terminal arrangement
Dimensions, mm

Frame size (A)	Types of breakers	A	B	C	D
1250, 1600	XS1250ND, XS1600ND	51	194	77	92
2000	XS2000ND	54	208	100	115
2500	XS2500ND	54	208	100	115
3200	XS3200ND	54	208	100	115

Notes:
Values in parentheses applies to 4-pole breakers.
2) Tightening torque of M3.5 terminal screws: $0.9-1.2 \mathrm{~N} \cdot \mathrm{~m}$
3) Applicable wire size: $2.0 \mathrm{~mm}^{2} \max \times 2$

Outline Dimensions

DC Air Circuit Breakers Outline Dimensions
AR216S, AR220S 3P 6-2
AR325S, AR332S 3P 6-4
AR325-NDH 4P 6-6
AR440S 3P 6-8
DC Moulded Case Circuit Breakers Outline Dimensions S160-SD, S160-GD, S160-SDN, S250-SD, S250-GD, S250-SDN 3P 6-10
S400-ND 3P 6-11
S800-ND 3P 6-11
S1000-ND 2P, 3P 6-12
XS1250ND 2P, 3P 6-13
XS1600ND 2P, 3P 6-14
XS2000ND 2P, 3P 6-15
XS2500ND, XS3200ND 2P, 3P 6-16
PVE160-SDL 3P 6-17
PVS160-SDL, PVS250-SDL 3P 6-18
PVS250-SNL 3P 6-18
PVS160-SDL, PVS250-SDL, PVS160-SNL, PVS250-SNL 4P 6-19
PVS160-GDH, PVS250-GDH 4P 6-19
PVS160-SDH, PVS250-SDH, PVS160-SNH, PVS250-SNH 4P 6-20
PVS400-NDL 3P 6-21
PVS400-NDL, PVS400-NDH 4P 6-21
PVS400-NNL 3P 6-22
PVS400-NNL, PVS400-NNH 4P 6-22
PVS800-NDL 3P 6-23
PVS800-NDL, PVS800-NDH 4P 6-23
PVS800-NNL 3P 6-24
PVS800-NNL, PVS800-NNH 4P 6-24

DC Air Circuit Breakers

Outline dimensions (mm)

- Type AR216S 3P, AR220S 3P Draw-out type

Terminal size

Type	© 1 1	(t2	(t3	W
AR216S	20	15	25	22.5
AR220S	20	15	25	-

Mounting holes

DC Air Circuit Breakers

Outline dimensions (mm)

- Type AR325S 3P, AR332S 3P Draw-out type

DC Air Circuit Breakers

Outline dimensions (mm)

- Type AR325-NDH 4P Draw-out type

AR325-NDH 4P

DC Air Circuit Breakers

Outline dimensions (mm)

- Type AR440S 3P Draw-out type

AR440S 3P

DC Moulded Case Circuit Breakers

ASL: Arrangement Standard Line
L : Handle Frame Centre Line Ψ : Handle Centre Line
S160-SD 3P, S160-GD 3P, S160-SDN 3P

Outline dimensions (mm)

S250-SD 3P, S250-GD 3P, S250-SDN 3P

Outline dimensions (mm)

S800-ND 3P

DC Moulded Case Circuit Breakers

ASL: Arrangement Standard Line
L : Handle Frame Centre Line Ψ : Handle Centre Line
Outline dimensions (mm)
S1000-ND 2P, 3P

ASL: Arrangement Standard Line
L: Handle Frame Centre Line
£: Handle Centre Line

Outline dimensions (mm)

XS1250ND 2P, 3P

Front-connected

Rear-connected

Note: Studs are factory installed in horizontal direction both on the line and load sides. Please specify when ordering if vertical direction is reqired.

Panel cutout (front view)

Panel cutout dimensions shown give an allowance of 1.5 mm around the handle escutcheon.

Front-connected

Note: 2 poles breaker is same outline dimensions as 3 poles breaker.

ASL: Arrangement Standard Line

Outline dimensions (mm)
XS2000ND 2P, 3P

Front-connected

Draw-out

Note: 2 poles breaker is same outline dimensions as 3 poles breaker.

DC Moulded Case Circuit Breakers

ASL: Arrangement Standard Line
L : Handle Frame Centre Line \mathbb{E} : Handle Centre Line Outline dimensions (mm)

XS2500ND 2P, 3P, XS3200ND 2P, 3P

Rear-connected

Panel cutout dimensions shown give an allowance of 2 mm around the handle escutcheon

[^8]ASL: Arrangement Standard Line
H: Handle Frame Centre Line
£: Handle Centre Line

Outline dimensions (mm)

PVE160-SDL 3P

ASL: Arrangement Standard Line
开: Handle Frame Centre Line \mathbb{E} : Handle Centre Line

Outline dimensions (mm)

PVS250-SNL 3P

ASL: Arrangement Standard Line
理: Handle Frame Centre Line $£$: Handle Centre Line
Outline dimensions (mm)
PVS160-SDL 4P, PVS250-SDL 4P, PVS160-SNL 4P, PVS250-SNL 4P

Outline dimensions (mm)

Front-connected

Panel cutout (front view)

$$
4
$$

Outline dimensions (mm)
PVS160-SNH 4P, PVS250-SNH 4P

Note: See section 4 for the installation of the insulating plate.

Outline dimensions (mm)

Note: See section 4 for the installation of the insulating plate.

Note: See section 4 for the installation of the insulating plate.

Note: See section 4 for the installation of the insulating plate.

ASL: Arrangement Standard Line
L: Handle Frame Centre Line
£: Handle Centre Line
Outline dimensions (mm)
PVS800-NDL 3P

Outline dimensions (mm)

Front-connected

Note: See section 4 for the installation of the insulating plate.

TERASAKI
Innovators in Protection Technology

TERASAKI ELECTRIC CO., LTD.

Head Office: 6-13-47 Kamihigashi, Hirano-ku, Osaka 547-0002, Japan Circuit Breaker Division: 6-13-47 Kamihigashi, Hirano-ku,

Osaka 547-0002, Japan

TEL +81-6-6791-2763
FAX +81-6-6791-2732
int-sales@terasaki.co.jp
http://www.terasaki.co.jp/

TERASAKI ELECTRIC (EUROPE) LTD.
80 Beardmore Way, Clydebank Industrial Estate
Clydebank, Glasgow, G81 4HT, Scotland (UK)
TEL +44-141-941-1940
FAX +44-141-952-9246
marketing@terasaki.co.uk
http://www.terasaki.com/

TERASAKI ELECTRIC (EUROPE) LTD.

FILIALE ITALIA

Via Ambrosoli, 4A-20090 Rodano, Milano, Italy
TEL +39-02-92278300
FAX +39-02-92278320
terasaki@terasaki.it
http://www.terasaki.it/

TERASAKI ELECTRIC (EUROPE) LTD. SUCURSAL EN ESPANA

Pol. Ind. Coll de la Manya, C/Cal Ros dels Ocells 5-7, 08403 Granollers, Barcelona, Spain
TEL +34-93-879-60-50
FAX +34-93-870-39-05
terasaki@terasaki.es http://www.terasaki.es/

TERASAKI ELECTRIC (EUROPE) LTD. FILIAL SVERIGE
Box 2082 SE-128 22 Skarpnäck Sweden
TEL +46-8-556-282-30
FAX +46-8-556-282-39
info@terasaki.se
http://www.terasaki.se/

TERASAKI ELECTRIC GROUP SHANGHAI REPRESENTATIVE OFFICE

Room No. 1405-6, Tomson Commercial Building 710 Dong Fang Road, Pudong, Shanghai, 200122, China
TEL +86-21-58201611
FAX +86-21-58201621
terasaki@vip.163.com

TERASAKI CIRCUIT BREAKERS (S) PTE. LTD.
17 Tuas Street Singapore 638454
TEL +65-6744-9752
FAX +65-6748-7592
tecs@tecs.com.sg

[^0]: -----------------------------Possible reverse connection

[^1]: *: 2 poles breaker is a 3 pole breaker with the center pole omitted

[^2]: Note (2): The breaking capacity goes down to $I_{\mathrm{cu}} 10 \mathrm{kA} / I_{\mathrm{cs}} 5 \mathrm{kA}$ for ground fault protection.

[^3]: Notes:
 (1) : Permissible operating range is 85 to 110%. A power transformer is available as option for AC380V or AC400-460V.
 (2) : The currents shown are the maximum values at the maximum rated operational voltage.
 (3) : The operating time is the value when the rated operational voltage is supplied.

 Loss of the control power in this operating time may cause the motor operator to fail to work.
 4) : The motor operator is of a short time duty. Do not subject it to more than 10 continuous ON-OFF operations. If this occurs, allow the motor operator to cool for at least 15 minutes.
 5) : When the rated operational voltage is DC24V the open voltage will be DC22V.

[^4]: Notes
 (1) : Permissible operating range is 85 to 110%. A power transformer is available as option for AC380V

[^5]: - For a change in mounting direction, see the Operating Instructions packaged with the product.

[^6]: - For a change in mounting direction, see the Operating Instructions packaged with the product.

[^7]: *: standard specification

[^8]: Note: 2 poles breaker is same outline dimensions as 3 poles breaker

